Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 117
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biophys Chem ; 308: 107194, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38401241

RESUMO

The TMEM16/Anoctamin protein family (TMEM16x) is composed of members with different functions; some members form Ca2+-activated chloride channels, while others are lipid scramblases or combine the two functions. TMEM16x proteins are typically activated in response to agonist-induced rises of intracellular Ca2+; thus, they couple Ca2+-signalling with cell electrical activity or plasmalemmal lipid homeostasis. The structural domains underlying these functions are not fully defined. We used a Naïve Bayes classifier to gain insights into these domains. The method enabled identification of regions involved in either ion or lipid transport, and suggested domains for possible pharmacological exploitation. The method allowed the prediction of the transport property of any given TMEM16x. We envisage this strategy could be exploited to illuminate the structure-function relationship of any protein family composed of members playing different molecular roles.


Assuntos
Anoctaminas , Lipídeos , Anoctaminas/metabolismo , Teorema de Bayes , Anoctamina-1/metabolismo , Transporte de Íons , Cálcio/metabolismo
2.
Nat Commun ; 15(1): 110, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167485

RESUMO

Transmembrane protein 16 F (TMEM16F) is a Ca2+-activated homodimer which functions as an ion channel and a phospholipid scramblase. Despite the availability of several TMEM16F cryogenic electron microscopy (cryo-EM) structures, the mechanism of activation and substrate translocation remains controversial, possibly due to restrictions in the accessible protein conformational space. In this study, we use atomic force microscopy under physiological conditions to reveal a range of structurally and mechanically diverse TMEM16F assemblies, characterized by variable inter-subunit dimerization interfaces and protomer orientations, which have escaped prior cryo-EM studies. Furthermore, we find that Ca2+-induced activation is associated to stepwise changes in the pore region that affect the mechanical properties of transmembrane helices TM3, TM4 and TM6. Our direct observation of membrane remodelling in response to Ca2+ binding along with additional electrophysiological analysis, relate this structural multiplicity of TMEM16F to lipid and ion permeation processes. These results thus demonstrate how conformational heterogeneity of TMEM16F directly contributes to its diverse physiological functions.


Assuntos
Anoctaminas , Canais Iônicos , Anoctaminas/metabolismo , Canais Iônicos/metabolismo , Fenômenos Eletrofisiológicos , Proteínas de Transferência de Fosfolipídeos/metabolismo , Lipídeos , Cálcio/metabolismo
3.
Pflugers Arch ; 476(2): 211-227, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37979051

RESUMO

Inflammatory airway diseases like cystic fibrosis, asthma and COVID-19 are characterized by high levels of pulmonary cytokines. Two well-established antiparasitic drugs, niclosamide and ivermectin, are intensively discussed for the treatment of viral inflammatory airway infections. Here, we examined these repurposed drugs with respect to their anti-inflammatory effects in airways in vivo and in vitro. Niclosamide reduced mucus content, eosinophilic infiltration and cell death in asthmatic mouse lungs in vivo and inhibited release of interleukins in the two differentiated airway epithelial cell lines CFBE and BCi-NS1.1 in vitro. Cytokine release was also inhibited by the knockdown of the Ca2+-activated Cl- channel anoctamin 1 (ANO1, TMEM16A) and the phospholipid scramblase anoctamin 6 (ANO6, TMEM16F), which have previously been shown to affect intracellular Ca2+ levels near the plasma membrane and to facilitate exocytosis. At concentrations around 200 nM, niclosamide inhibited inflammation, lowered intracellular Ca2+, acidified cytosolic pH and blocked activation of ANO1 and ANO6. It is suggested that niclosamide brings about its anti-inflammatory effects at least in part by inhibiting ANO1 and ANO6, and by lowering intracellular Ca2+ levels. In contrast to niclosamide, 1 µM ivermectin did not exert any of the effects described for niclosamide. The present data suggest niclosamide as an effective anti-inflammatory treatment in CF, asthma, and COVID-19, in addition to its previously reported antiviral effects. It has an advantageous concentration-response relationship and is known to be well tolerated.


Assuntos
Asma , COVID-19 , Camundongos , Animais , Anoctamina-1/metabolismo , Ivermectina/farmacologia , Ivermectina/uso terapêutico , Niclosamida/farmacologia , Niclosamida/uso terapêutico , Anoctaminas/metabolismo , Pulmão/metabolismo , Proteínas de Transferência de Fosfolipídeos/metabolismo , Cálcio/metabolismo , Inflamação/tratamento farmacológico , Anti-Inflamatórios , Canais de Cloreto/metabolismo
4.
Am J Physiol Heart Circ Physiol ; 326(1): H270-H277, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37999645

RESUMO

Endothelial insulin resistance represents a causal factor in the pathogenesis of type 2 diabetes (T2D) and vascular disease, thus the need to identify molecular mechanisms underlying defects in endothelial insulin signaling. We previously have shown that a disintegrin and metalloproteinase-17 (ADAM17) is increased while insulin receptor α-subunit (IRα) is decreased in the vasculature of patients with T2D, leading to impaired insulin-induced vasodilation. We have also demonstrated that ADAM17 sheddase activity targets IRα; however, the mechanisms driving endothelial ADAM17 activity in T2D are largely unknown. Herein, we report that externalization of phosphatidylserine (PS) to the outer leaflet of the plasma membrane causes ADAM17-mediated shedding of IRα and blunting of insulin signaling in endothelial cells. Furthermore, we demonstrate that endothelial PS externalization is mediated by the phospholipid scramblase anoctamin-6 (ANO6) and that this process can be stimulated by neuraminidase, a soluble enzyme that cleaves sialic acid residues. Of note, we demonstrate that men and women with T2D display increased levels of neuraminidase activity in plasma, relative to age-matched healthy individuals, and this occurs in conjunction with increased ADAM17 activity and impaired leg blood flow responses to endogenous insulin. Collectively, this work reveals the neuraminidase-ANO6-ADAM17 axis as a novel potential target for restoring endothelial insulin sensitivity in T2D.NEW & NOTEWORTHY This work provides the first evidence that neuraminidase, an enzyme increased in the circulation of men and women with type 2 diabetes (T2D), promotes anoctamin-6 (ANO6)-dependent externalization of phosphatidylserine in endothelial cells, which in turn leads to activation of a disintegrin and metalloproteinase-17 (ADAM17) and consequent shedding of the insulin receptor-α from the cell surface. Hence, this work supports that consideration should be given to the neuraminidase-ANO6-ADAM17 axis as a novel potential target for restoring endothelial insulin sensitivity in T2D.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Masculino , Humanos , Feminino , Células Endoteliais/metabolismo , Receptor de Insulina/metabolismo , Fosfatidilserinas/metabolismo , Neuraminidase/metabolismo , Insulina/metabolismo , Desintegrinas , Proteína ADAM17/metabolismo , Anoctaminas/metabolismo
5.
Nat Commun ; 14(1): 4874, 2023 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-37573365

RESUMO

The dual functions of TMEM16F as Ca2+-activated ion channel and lipid scramblase raise intriguing questions regarding their molecular basis. Intrigued by the ability of the FDA-approved drug niclosamide to inhibit TMEM16F-dependent syncytia formation induced by SARS-CoV-2, we examined cryo-EM structures of TMEM16F with or without bound niclosamide or 1PBC, a known blocker of TMEM16A Ca2+-activated Cl- channel. Here, we report evidence for a lipid scrambling pathway along a groove harboring a lipid trail outside the ion permeation pore. This groove contains the binding pocket for niclosamide and 1PBC. Mutations of two residues in this groove specifically affect lipid scrambling. Whereas mutations of some residues in the binding pocket of niclosamide and 1PBC reduce their inhibition of TMEM16F-mediated Ca2+ influx and PS exposure, other mutations preferentially affect the ability of niclosamide and/or 1PBC to inhibit TMEM16F-mediated PS exposure, providing further support for separate pathways for ion permeation and lipid scrambling.


Assuntos
Anoctaminas , COVID-19 , Humanos , Anoctaminas/metabolismo , Cálcio/metabolismo , Canais de Cálcio , Niclosamida/farmacologia , SARS-CoV-2/metabolismo , Lipídeos , Proteínas de Transferência de Fosfolipídeos/metabolismo
6.
Int J Mol Sci ; 24(2)2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36674564

RESUMO

Prostate cancer affects millions of men globally. The prostate cancer-associated gene ANO7 is downregulated in advanced prostate cancer, whereas benign tissue and low-grade cancer display varying expression levels. In this study, we assess the spatial correlation between ANO7 mRNA and protein using fluorescent in situ hybridization and immunohistochemistry for the detection of mRNA and protein in parallel sections of tissue microarrays prepared from radical prostatectomy samples. We show that ANO7 mRNA and protein expression correlate in prostate tissue. Furthermore, we show that ANO7 mRNA is enriched in the nuclei of the luminal cells at 89% in benign ducts and low-grade cancer, and at 78% in high-grade cancer. The nuclear enrichment of ANO7 mRNA was validated in prostate cancer cell lines 22Rv1 and MDA PCa 2b using droplet digital polymerase chain reaction (ddPCR) on RNA isolated from nuclear and cytoplasmic fractions of the cells. The nuclear enrichment of ANO7 mRNA was compared to the nuclearly-enriched lncRNA MALAT1, confirming the surprisingly high nuclear retention of ANO7 mRNA. ANO7 has been suggested to be used as a diagnostic marker and a target for immunotherapy, but a full comprehension of its role in prostate cancer progression is currently lacking. Our results contribute to a better understanding of the dynamics of ANO7 expression in prostatic tissue.


Assuntos
Próstata , Neoplasias da Próstata , Masculino , Humanos , Próstata/metabolismo , Hibridização in Situ Fluorescente , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Células Epiteliais/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Anoctaminas/genética , Anoctaminas/metabolismo
7.
Nat Commun ; 13(1): 6692, 2022 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-36335104

RESUMO

TMEM16F, a member of the conserved TMEM16 family, plays a central role in the initiation of blood coagulation and the fusion of trophoblasts. The protein mediates passive ion and lipid transport in response to an increase in intracellular Ca2+. However, the mechanism of how the protein facilitates both processes has remained elusive. Here we investigate the basis for TMEM16F activation. In a screen of residues lining the proposed site of conduction, we identify mutants with strongly activating phenotype. Structures of these mutants determined herein by cryo-electron microscopy show major rearrangements leading to the exposure of hydrophilic patches to the membrane, whose distortion facilitates lipid diffusion. The concomitant opening of a pore promotes ion conduction in the same protein conformation. Our work has revealed a mechanism that is distinct for this branch of the family and that will aid the development of a specific pharmacology for a promising drug target.


Assuntos
Anoctaminas , Proteínas de Transferência de Fosfolipídeos , Anoctaminas/genética , Anoctaminas/metabolismo , Proteínas de Transferência de Fosfolipídeos/metabolismo , Microscopia Crioeletrônica , Conformação Proteica , Lipídeos , Cálcio/metabolismo
8.
Prog Neurobiol ; 219: 102369, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36330924

RESUMO

Sensing smells of foods, prey, or predators determines animal survival. Olfactory sensory neurons in the olfactory epithelium (OE) detect odorants, where cAMP and Ca2+ play a significant role in transducing odorant inputs to electrical activity. Here we show Anoctamin 9, a cation channel activated by cAMP/PKA pathway, is expressed in the OE and amplifies olfactory signals. Ano9-deficient mice had reduced olfactory behavioral sensitivity, electro-olfactogram signals, and neural activity in the olfactory bulb. In line with the difference in olfaction between birds and other vertebrates, chick ANO9 failed to respond to odorants, whereas chick CNGA2, a major transduction channel, showed greater responses to cAMP. Thus, we concluded that the signal amplification by ANO9 is important for mammalian olfactory transduction.


Assuntos
Neurônios Receptores Olfatórios , Olfato , Animais , Camundongos , Anoctaminas/metabolismo , Mamíferos/metabolismo , Odorantes , Bulbo Olfatório/metabolismo , Neurônios Receptores Olfatórios/metabolismo , Olfato/fisiologia
9.
Commun Biol ; 5(1): 990, 2022 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-36123525

RESUMO

TMEM16F is a Ca2+-activated phospholipid scramblase in the TMEM16 family of membrane proteins. Unlike other TMEM16s exhibiting a membrane-exposed hydrophilic groove that serves as a translocation pathway for lipids, the experimentally determined structures of TMEM16F shows the groove in a closed conformation even under conditions of maximal scramblase activity. It is currently unknown if/how TMEM16F groove can open for lipid scrambling. Here we describe the analysis of ~400 µs all-atom molecular dynamics (MD) simulations of the TMEM16F revealing an allosteric mechanism leading to an open-groove, lipid scrambling competent state of the protein. The groove opens into a continuous hydrophilic conduit that is highly similar in structure to that seen in other activated scramblases. The allosteric pathway connects this opening to an observed destabilization of the Ca2+ ion bound at the distal site near the dimer interface, to the dynamics of specific protein regions that produces the open-groove state to scramble phospholipids.


Assuntos
Anoctaminas , Proteínas de Transferência de Fosfolipídeos , Anoctaminas/química , Anoctaminas/genética , Anoctaminas/metabolismo , Membrana Celular/metabolismo , Condutividade Elétrica , Proteínas de Transferência de Fosfolipídeos/genética , Proteínas de Transferência de Fosfolipídeos/metabolismo , Fosfolipídeos/metabolismo
10.
World J Gastroenterol ; 28(32): 4649-4667, 2022 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-36157935

RESUMO

BACKGROUND: Anoctamin 5 (ANO5)/transmembrane protein 16E belongs to the ANO/ transmembrane protein 16 anion channel family. ANOs comprise a family of plasma membrane proteins that mediate ion transport and phospholipid scrambling and regulate other membrane proteins in numerous cell types. Previous studies have elucidated the roles and mechanisms of ANO5 activation in various cancer types. However, it remains unclear whether ANO5 acts as a plasma membrane chloride channel, and its expression and functions in gastric cancer (GC) have not been investigated. AIM: To examine the role of ANO5 in the regulation of tumor progression and clinicopathological significance of its expression in GC. METHODS: Knockdown experiments using ANO5 small interfering RNA were conducted in human GC cell lines, and changes in cell proliferation, cell cycle progression, apoptosis, and cellular movement were assessed. The gene expression profiles of GC cells were investigated following ANO5 silencing by microarray analysis. Immunohistochemical staining of ANO5 was performed on 195 primary tumor samples obtained from patients with GC who underwent curative gastrectomy between 2011 and 2013 at our department. RESULTS: Reverse transcription-quantitative polymerase chain reaction (PCR) and western blotting demonstrated high ANO5 mRNA and protein expression, respectively, in NUGC4 and MKN45 cells. In these cells, ANO5 silencing inhibited cell proliferation and induced apoptosis. In addition, the knockdown of ANO5 inhibited G1-S phase progression, invasion, and migration. The results of the microarray analysis revealed changes in the expression levels of several cyclin-associated genes, such as CDKN1A, CDK2/4/6, CCNE2, and E2F1, in ANO5-depleted NUGC4 cells. The expression of these genes was verified using reverse transcription-quantitative PCR. Immunohistochemical staining revealed that high ANO5 expression levels were associated with a poor prognosis. Multivariate analysis identified high ANO5 expression as an independent prognostic factor for 5-year survival in patients with GC (P = 0.0457). CONCLUSION: ANO5 regulates the cell cycle progression by regulating the expression of cyclin-associated genes and affects the prognosis of patients with GC. These results may provide insights into the role of ANO5 as a key mediator in tumor progression and/or promising prognostic biomarker for GC.


Assuntos
Neoplasias Gástricas , Anoctaminas/genética , Anoctaminas/metabolismo , Biomarcadores , Ciclo Celular , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células/genética , Canais de Cloreto/genética , Ciclinas/genética , Ciclinas/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Proteínas de Membrana/genética , Fosfolipídeos , Prognóstico , RNA Mensageiro/genética , RNA Interferente Pequeno/metabolismo , Neoplasias Gástricas/patologia
11.
Biophys J ; 121(18): 3445-3457, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-35978550

RESUMO

Transmembrane protein 16F (TMEM16F) is a ubiquitously expressed Ca2+-activated phospholipid scramblase that also functions as a largely non-selective ion channel. Though recent structural studies have revealed the closed and intermediate conformations of mammalian TMEM16F (mTMEM16F), the open and conductive state remains elusive. Instead, it has been proposed that an open hydrophilic pathway may not be required for lipid scrambling. We previously identified an inner activation gate, consisting of F518, Y563, and I612, and showed that charged mutations of the inner gate residues led to constitutively active mTMEM16F scrambling. Herein, atomistic simulations show that lysine substitution of F518 and Y563 can indeed lead to spontaneous opening of the permeation pore in the Ca2+-bound state of mTMEM16F. Dilation of the pore exposes hydrophilic patches in the upper pore region, greatly increases the pore hydration level, and enables lipid scrambling. The putative open state of mTMEM16F resembles the active state of fungal scramblases and is a meta-stable state for the wild-type protein in the Ca2+-bound state. Therefore, mTMEM16F may be capable of supporting the canonical in-groove scrambling mechanism in addition to the out-of-groove one. Further analysis reveals that the in-groove phospholipid and ion transduction pathways of mTMEM16F overlap from the intracellular side up to the inner gate but diverge from each other with different exits to the extracellular side of membrane.


Assuntos
Anoctaminas , Proteínas de Transferência de Fosfolipídeos , Animais , Anoctaminas/química , Anoctaminas/genética , Anoctaminas/metabolismo , Canais Iônicos/metabolismo , Lisina , Mamíferos/metabolismo , Mutação , Proteínas de Transferência de Fosfolipídeos/metabolismo , Fosfolipídeos/química
12.
Mol Phylogenet Evol ; 177: 107595, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35914647

RESUMO

Most of Transmembrane protein 16 (TMEM16) family members function as either a Ca2+-activated Cl- channel (CaCC) or phospholipid scramblase (CaPLSase) and play diverse physiological roles. It is well conserved in eukaryotes; however, the origin and evolution of different subfamilies in Metazoa are not yet understood. To uncover the evolutionary history of the TMEM16 family, we analyzed 398 proteins from 74 invertebrate species using evolutionary genomics. We found that the TMEM16C-F and J subfamilies are vertebrate-specific, but the TMEM16A/B, G, H, and K subfamilies are ancient and present in many, but not all metazoan species. The most ancient subfamilies in Metazoa, TMEM16L and M, are only maintained in limited species. TMEM16N and O are Cnidaria- and Ecdysozoa-specific subfamilies, respectively, and Ctenophora, Xenacoelomorpha, and Rotifera contain species-specific proteins. We also identified TMEM16 genes that are closely linked together in the genome, suggesting that they have been generated via recent gene duplication. The anoctamin domain structures of invertebrate-specific TMEM16 proteins predicted by AlphaFold2 contain conserved Ca2+-binding motifs and permeation pathways with either narrow or wide inner gates. The inner gate distance of TMEM16 protein may have frequently switched during metazoan evolution, and thus determined the function of the protein as either CaCC or CaPLSase. These results demonstrate that TMEM16 family has evolved by gene gain and loss in metazoans, and the genes have been generally under purifying selection to maintain protein structures and physiological functions.


Assuntos
Anoctaminas , Proteínas de Transferência de Fosfolipídeos , Animais , Anoctaminas/genética , Anoctaminas/metabolismo , Canais de Cloreto/química , Canais de Cloreto/genética , Canais de Cloreto/metabolismo , Eucariotos/metabolismo , Proteínas de Transferência de Fosfolipídeos/genética , Proteínas de Transferência de Fosfolipídeos/metabolismo , Filogenia
13.
Elife ; 112022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35670667

RESUMO

TMEM16F, a Ca2+-activated phospholipid scramblase (CaPLSase), is critical for placental trophoblast syncytialization, HIV infection, and SARS-CoV2-mediated syncytialization, however, how TMEM16F is activated during cell fusion is unclear. Here, using trophoblasts as a model for cell fusion, we demonstrate that Ca2+ influx through the Ca2+ permeable transient receptor potential vanilloid channel TRPV4 is critical for TMEM16F activation and plays a role in subsequent human trophoblast fusion. GSK1016790A, a TRPV4 specific agonist, robustly activates TMEM16F in trophoblasts. We also show that TRPV4 and TMEM16F are functionally coupled within Ca2+ microdomains in a human trophoblast cell line using patch-clamp electrophysiology. Pharmacological inhibition or gene silencing of TRPV4 hinders TMEM16F activation and subsequent trophoblast syncytialization. Our study uncovers the functional expression of TRPV4 and one of the physiological activation mechanisms of TMEM16F in human trophoblasts, thus providing us with novel strategies to regulate CaPLSase activity as a critical checkpoint of physiologically and disease-relevant cell fusion events.


Assuntos
Anoctaminas/metabolismo , COVID-19 , Infecções por HIV , Proteínas de Transferência de Fosfolipídeos/metabolismo , Cálcio/metabolismo , Feminino , Humanos , Placenta/metabolismo , Gravidez , RNA Viral , SARS-CoV-2 , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/metabolismo , Trofoblastos/metabolismo
14.
Int J Mol Sci ; 23(3)2022 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-35163502

RESUMO

The TMEM16A/anoctamin-1 calcium-activated chloride channel (CaCC) contributes to a range of vital functions, such as the control of vascular tone and epithelial ion transport. The channel is a founding member of a family of 10 proteins (TMEM16x) with varied functions; some members (i.e., TMEM16A and TMEM16B) serve as CaCCs, while others are lipid scramblases, combine channel and scramblase function, or perform additional cellular roles. TMEM16x proteins are typically activated by agonist-induced Ca2+ release evoked by Gq-protein-coupled receptor (GqPCR) activation; thus, TMEM16x proteins link Ca2+-signalling with cell electrical activity and/or lipid transport. Recent studies demonstrate that a range of other cellular factors-including plasmalemmal lipids, pH, hypoxia, ATP and auxiliary proteins-also control the activity of the TMEM16A channel and its paralogues, suggesting that the TMEM16x proteins are effectively polymodal sensors of cellular homeostasis. Here, we review the molecular pathophysiology, structural biology, and mechanisms of regulation of TMEM16x proteins by multiple cellular factors.


Assuntos
Anoctamina-1/metabolismo , Anoctaminas/metabolismo , Canais de Cloreto/metabolismo , Animais , Anoctaminas/fisiologia , Transporte Biológico/fisiologia , Membrana Celular/metabolismo , Humanos , Transporte de Íons/fisiologia , Proteínas de Transferência de Fosfolipídeos/metabolismo
15.
FEBS J ; 289(9): 2578-2592, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34775680

RESUMO

Membrane asymmetry is important for cellular physiology and established by energy-dependent unidirectional lipid translocases, which have diverse physiological functions in plants. By contrast, the role of phospholipid scrambling (PLS), the passive bidirectional lipid transfer leading to the break-down of membrane asymmetry, is currently still unexplored. The Arabidopsis thaliana genome contains a single gene (At1g73020) with homology to the eukaryotic TMEM16 family of Ca2+ -activated phospholipid scramblases. Here, we investigated the protein function of this Arabidopsis homolog. Fluorescent AtTMEM16 fusions localized to the ER both in transiently expressing Arabidopsis protoplasts and HEK293 cells. A putative scrambling domain (SCRD) was identified on the basis of sequence conservation and conferred PLS to transfected HEK293 cells, when grafted into the backbone of the non-scrambling plasma membrane-localized TMEM16A chloride channel. Finally, AtTMEM16 'gain-of-function' variants gave rise to cellular phenotypes typical of aberrant scramblase activity, which were reversed by the additional introduction of a 'loss-of-function' mutation into the SCRD. In conclusion, our data suggest AtTMEM16 works as an ER-resident lipid scramblase in Arabidopsis.


Assuntos
Anoctaminas , Arabidopsis , Anoctaminas/genética , Anoctaminas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Cálcio/metabolismo , Células HEK293 , Humanos , Proteínas de Transferência de Fosfolipídeos/genética , Proteínas de Transferência de Fosfolipídeos/metabolismo , Fosfolipídeos/metabolismo
16.
Int J Mol Sci ; 22(16)2021 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-34445284

RESUMO

TMEM16F is involved in several physiological processes, such as blood coagulation, bone development and virus infections. This protein acts both as a Ca2+-dependent phospholipid scramblase and a Ca2+-activated ion channel but several studies have reported conflicting results about the ion selectivity of the TMEM16F-mediated current. Here, we have performed a detailed side-by-side comparison of the ion selectivity of TMEM16F using the whole-cell and inside-out excised patch configurations to directly compare the results. In inside-out configuration, Ca2+-dependent activation was fast and the TMEM16F-mediated current was activated in a few milliseconds, while in whole-cell recordings full activation required several minutes. We determined the relative permeability between Na+ and Cl¯ (PNa/PCl) using the dilution method in both configurations. The TMEM16F-mediated current was highly nonselective, but there were differences depending on the configuration of the recordings. In whole-cell recordings, PNa/PCl was approximately 0.5, indicating a slight preference for Cl¯ permeation. In contrast, in inside-out experiments the TMEM16F channel showed a higher permeability for Na+ with PNa/PCl reaching 3.7. Our results demonstrate that the time dependence of Ca2+ activation and the ion selectivity of TMEM16F depend on the recording configuration.


Assuntos
Anoctaminas/metabolismo , Proteínas de Transferência de Fosfolipídeos/metabolismo , Animais , Ânions/metabolismo , Anoctaminas/genética , Cátions/metabolismo , Cloretos/metabolismo , Células HEK293 , Humanos , Transporte de Íons , Camundongos , Permeabilidade , Proteínas de Transferência de Fosfolipídeos/genética , Sódio/metabolismo
17.
Nat Commun ; 12(1): 4990, 2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34404808

RESUMO

Cells can expand their plasma membrane laterally by unfolding membrane undulations and by exocytosis. Here, we describe a third mechanism involving invaginations held shut by the membrane adapter, dynamin. Compartments open when Ca activates the lipid scramblase, TMEM16F, anionic phospholipids escape from the cytoplasmic monolayer in exchange for neutral lipids, and dynamins relax. Deletion of TMEM16F or dynamins blocks expansion, with loss of dynamin expression generating a maximally expanded basal plasma membrane state. Re-expression of dynamin2 or its GTPase-inactivated mutant, but not a lipid binding mutant, regenerates reserve compartments and rescues expansion. Dynamin2-GFP fusion proteins form punctae that rapidly dissipate from these compartments during TMEM16F activation. Newly exposed compartments extend deeply into the cytoplasm, lack numerous organellar markers, and remain closure-competent for many seconds. Without Ca, compartments open slowly when dynamins are sequestered by cytoplasmic dynamin antibodies or when scrambling is mimicked by neutralizing anionic phospholipids and supplementing neutral lipids. Activation of Ca-permeable mechanosensitive channels via cell swelling or channel agonists opens the compartments in parallel with phospholipid scrambling. Thus, dynamins and TMEM16F control large plasma membrane reserves that open in response to lateral membrane stress and Ca influx.


Assuntos
Anoctaminas/metabolismo , Membrana Celular/metabolismo , Dinaminas/metabolismo , Proteínas de Transferência de Fosfolipídeos/metabolismo , Anoctaminas/genética , Cálcio/metabolismo , Citoplasma , Técnicas de Inativação de Genes , Células HEK293 , Humanos , Membranas/metabolismo , Proteínas de Transferência de Fosfolipídeos/genética , Fosfolipídeos/metabolismo
18.
FASEB J ; 35(9): e21808, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34390515

RESUMO

The link between serum uric acid (SUA) and the risk of venous thromboembolism (VTE) is well established. Recent data suggested a causative role of UA in endothelial cells (ECs) dysfunction. However, the molecular mechanism of high UA on thrombogenesis is unknown. We investigate whether high UA induce phosphatidylserine (PS) externalization and microparticle (MP) shedding in cultured EC, and contribute to UA-induced hypercoagulable state. In the present study, we demonstrate that UA induces PS exposure and EMP release of EC in a concentration- and time-dependent manner, which enhances the procoagulant activity (PCA) of EC and inhibited over 90% by lactadherin in vitro. Furthermore, hyperuricemic rat model was used to evaluate the development of thrombi following by flow stasis in the inferior vena cava (IVC). Hyperuricemia group is more likely to form large and hard thrombi compared with control. Importantly, we found that TMEM16F expression is significantly upregulated in UA-treated EC, which is crucial for UA-induced PS exposure and MP formation. Additionally, UA increases the generation of reactive oxygen species (ROS), lipid peroxidation, and cytosolic Ca2+ concentration in EC, which might contribute to increased TMEM16F expression. Using confocal microscopy, we also observed disruption of the actin cytoskeleton, suggesting that depolymerization of actin filaments might be required for TMEM16F activation and followed by PS exposure and membrane blebbing in UA-treated EC. Our results demonstrate a thrombotic role of EC in hyperuricemia through TMEM16F-mediated PS exposure and MPs release.


Assuntos
Anoctaminas/metabolismo , Micropartículas Derivadas de Células/metabolismo , Células Endoteliais/metabolismo , Hiperuricemia/metabolismo , Fosfatidilserinas/metabolismo , Proteínas de Transferência de Fosfolipídeos/metabolismo , Citoesqueleto de Actina/metabolismo , Animais , Cálcio/metabolismo , Células Cultivadas , Células Endoteliais da Veia Umbilical Humana , Humanos , Hiperuricemia/sangue , Peroxidação de Lipídeos/fisiologia , Masculino , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Ácido Úrico/sangue
19.
Int J Mol Sci ; 22(12)2021 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-34207150

RESUMO

P2X7 receptors (P2X7) are cationic channels involved in many diseases. Following their activation by extracellular ATP, distinct signaling pathways are triggered, which lead to various physiological responses such as the secretion of pro-inflammatory cytokines or the modulation of cell death. P2X7 also exhibit unique behaviors, such as "macropore" formation, which corresponds to enhanced large molecule cell membrane permeability and current facilitation, which is caused by prolonged activation. These two phenomena have often been confounded but, thus far, no clear mechanisms have been resolved. Here, by combining different approaches including whole-cell and single-channel recordings, pharmacological and biochemical assays, CRISPR/Cas9 technology and cell imaging, we provide evidence that current facilitation and macropore formation involve functional complexes comprised of P2X7 and TMEM16, a family of Ca2+-activated ion channel/scramblases. We found that current facilitation results in an increase of functional complex-embedded P2X7 open probability, a result that is recapitulated by plasma membrane cholesterol depletion. We further show that macropore formation entails two distinct large molecule permeation components, one of which requires functional complexes featuring TMEM16F subtype, the other likely being direct permeation through the P2X7 pore itself. Such functional complexes can be considered to represent a regulatory hub that may orchestrate distinct P2X7 functionalities.


Assuntos
Anoctaminas/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Trifosfato de Adenosina/metabolismo , Algoritmos , Animais , Anoctaminas/química , Sistemas CRISPR-Cas , Membrana Celular/metabolismo , Permeabilidade da Membrana Celular , Colesterol/metabolismo , Células HEK293 , Humanos , Imuno-Histoquímica , Modelos Biológicos , Oócitos , Receptores Purinérgicos P2X7/química
20.
Nat Commun ; 12(1): 2826, 2021 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-33990555

RESUMO

TMEM16 lipid scramblases transport lipids and also operate as ion channels with highly variable ion selectivities and various physiological functions. However, their molecular mechanisms of ion conduction and selectivity remain largely unknown. Using computational electrophysiology simulations at atomistic resolution, we identified the main ion-conductive state of TMEM16 lipid scramblases, in which an ion permeation pathway is lined by lipid headgroups that directly interact with permeating ions in a voltage polarity-dependent manner. We found that lipid headgroups modulate the ion-permeability state and regulate ion selectivity to varying degrees in different scramblase isoforms, depending on the amino-acid composition of the pores. Our work has defined the structural basis of ion conduction and selectivity in TMEM16 lipid scramblases and uncovered the mechanisms responsible for the direct effects of membrane lipids on the conduction properties of ion channels.


Assuntos
Anoctaminas/metabolismo , Proteínas Fúngicas/metabolismo , Lipídeos de Membrana/metabolismo , Proteínas de Transferência de Fosfolipídeos/metabolismo , Anoctaminas/química , Proteínas Fúngicas/química , Fusarium/metabolismo , Transporte de Íons , Lipídeos de Membrana/química , Modelos Moleculares , Proteínas de Transferência de Fosfolipídeos/química , Conformação Proteica , Estrutura Quaternária de Proteína , Eletricidade Estática
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...